What is IoT?
The internet of things (IoT) is a catch-all term for the growing number of electronics that aren’t traditional computing devices, but are connected to the internet to send data, receive instructions or both.
There’s an incredibly broad range of things that fall under that umbrella: Internet-connected “smart” versions of traditional appliances like refrigerators and light bulbs; gadgets that could only exist in an internet-enabled world like Alexa-style digital assistants; internet-enabled sensors that are transforming factories, healthcare, transportation, distribution centers and farms.
What is the internet of things?
The IoT brings the power of the internet, data processing and analytics to the real world of physical objects. For consumers, this means interacting with the global information network without the intermediary of a keyboard and screen; many of their everyday objects and appliances can take instructions from that network with minimal human intervention.
How does the IoT work?
The basic elements of the IoT are devices that gather data. Broadly speaking, they are internet-connected devices, so they each have an IP address. They range in complexity from autonomous vehicles that haul products around factory floors to simple sensors that monitor the temperature in buildings. They also include personal devices like fitness trackers that monitor the number of steps individuals take each day. To make that data useful it needs to be collected, processed, filtered and analyzed, each of which can be handled in a variety of ways.
Collecting the data is done by transmitting it from the devices to a gathering point. Moving the data can be done wirelessly using a range of technologies or on wired networks. The data can be sent over the internet to a data center or a cloud that has storage and compute power or the transfer can be staged, with intermediary devices aggregating the data before sending it along.
Processing the data can take place in data centers or cloud, but sometimes that’s not an option. In the case of critical devices such as shutoffs in industrial settings, the delay of sending data from the device to a remote data center is too great. The round-trip time for sending data, processing it, analyzing it and returning instructions (close that valve before the pipes burst) can take too long. In such cases edge-computing can come into play, where a smart edge device can aggregate data, analyze it and fashion responses if necessary, all within relatively close physical distance, thereby reducing delay. Edge devices also have upstream connectivity for sending data to be further processed and stored.
What Technologies Have Made IoT Possible?
While the idea of IoT has been in existence for a long time, a collection of recent advances in a number of different technologies has made it practical.
- Access to low-cost, low-power sensor technology. Affordable and reliable sensors are making IoT technology possible for more manufacturers.
- Connectivity. A host of network protocols for the internet has made it easy to connect sensors to the cloud and to other “things” for efficient data transfer.
- Cloud computing platforms. The increase in the availability of cloud platforms enables both businesses and consumers to access the infrastructure they need to scale up without actually having to manage it all.
- Machine learning and analytics. With advances in machine learning and analytics, along with access to varied and vast amounts of data stored in the cloud, businesses can gather insights faster and more easily. The emergence of these allied technologies continues to push the boundaries of IoT and the data produced by IoT also feeds these technologies.
- Conversational artificial intelligence (AI). Advances in neural networks have brought natural-language processing (NLP) to IoT devices (such as digital personal assistants Alexa, Cortana, and Siri) and made them appealing, affordable, and viable for home use.
What Industries Can Benefit from IoT?
Organizations best suited for IoT are those that would benefit from using sensor devices in their business processes.
Manufacturing
Manufacturers can gain a competitive advantage by using production-line monitoring to enable proactive maintenance on equipment when sensors detect an impending failure. Sensors can actually measure when production output is compromised. With the help of sensor alerts, manufacturers can quickly check equipment for accuracy or remove it from production until it is repaired. This allows companies to reduce operating costs, get better uptime, and improve asset performance management.
Automotive
The automotive industry stands to realize significant advantages from the use of IoT applications. In addition to the benefits of applying IoT to production lines, sensors can detect impending equipment failure in vehicles already on the road and can alert the driver with details and recommendations. Thanks to aggregated information gathered by IoT-based applications, automotive manufacturers and suppliers can learn more about how to keep cars running and car owners informed.
Transportation and Logistics
Transportation and logistical systems benefit from a variety of IoT applications. Fleets of cars, trucks, ships, and trains that carry inventory can be rerouted based on weather conditions, vehicle availability, or driver availability, thanks to IoT sensor data. The inventory itself could also be equipped with sensors for track-and-trace and temperature-control monitoring. The food and beverage, flower, and pharmaceutical industries often carry temperature-sensitive inventory that would benefit greatly from IoT monitoring applications that send alerts when temperatures rise or fall to a level that threatens the product.
Retail
IoT applications allow retail companies to manage inventory, improve customer experience, optimize supply chain, and reduce operational costs. For example, smart shelves fitted with weight sensors can collect RFID-based information and send the data to the IoT platform to automatically monitor inventory and trigger alerts if items are running low. Beacons can push targeted offers and promotions to customers to provide an engaging experience.
Public Sector
The benefits of IoT in the public sector and other service-related environments are similarly wide-ranging. For example, government-owned utilities can use IoT-based applications to notify their users of mass outages and even of smaller interruptions of water, power, or sewer services. IoT applications can collect data concerning the scope of an outage and deploy resources to help utilities recover from outages with greater speed.
Healthcare
IoT asset monitoring provides multiple benefits to the healthcare industry. Doctors, nurses, and orderlies often need to know the exact location of patient-assistance assets such as wheelchairs. When a hospital’s wheelchairs are equipped with IoT sensors, they can be tracked from the IoT asset-monitoring application so that anyone looking for one can quickly find the nearest available wheelchair. Many hospital assets can be tracked this way to ensure proper usage as well as financial accounting for the physical assets in each department.
General Safety Across All Industries
In addition to tracking physical assets, IoT can be used to improve worker safety. Employees in hazardous environments such as mines, oil and gas fields, and chemical and power plants, for example, need to know about the occurrence of a hazardous event that might affect them. When they are connected to IoT sensor–based applications, they can be notified of accidents or rescued from them as swiftly as possible. IoT applications are also used for wearables that can monitor human health and environmental conditions. Not only do these types of applications help people better understand their own health, they also permit physicians to monitor patients remotely.
History of IoT
A world of omnipresent connected devices and sensors is one of the oldest tropes of science fiction. IoT lore has dubbed a vending machine at Carnegie Mellon that was connected to APRANET in 1970 as the first Internet of Things device, and many technologies have been touted as enabling “smart” IoT-style characteristics to give them a futuristic sheen. But the term Internet of Things was coined in 1999 by British technologist Kevin Ashton.
Examples of things range from consumer-oriented devices such as wearables and smart home solutions (Consumer IoT) to connected equipment in the enterprise (Enterprise IoT) and industrial assets such as machines, robots, or even workers in smart factories and industrial facilities (Industrial IoT, the essential component of Industry 4.0).
The question is not what you can connect but why you would do so: the purpose, the outcomes. And here is well there are a lot of potential goals which determine what things you want to connect so you can capture data from them (and have sent from, between and/or to them). That’s why often you’ll see distinctions being made between Industrial IoT, Consumer IoT and far more terms which are mentioned in this overview.
So, IoT is an umbrella term with many use cases, technologies, standards and applications. Moreover, it’s part of a bigger reality with even more technologies. The things and data are the starting point and essence of what IoT enables and means. IoT devices and assets are equipped with electronics, such as sensors and actuators, connectivity/communication electronics and software to capture, filter and exchange data about themselves, their state and their environment.
The connection of IoT ‘things’ and usage of IoT data enables various improvements and innovations in the lives of consumers, in business, healthcare, mobility, cities and society. The potential goals of IoT are often segmented into IoT use cases: reasons for which IoT is deployed. Examples: health monitoring, asset tracking, environmental monitoring, predictive maintenance and home automation.
There are hundreds of IoT use cases, depending on the industry and/or type of application. Some IoT use cases exist across industries, others are more vertical. An example: asset tracking is a universal use case. It could be a consumer application to know where your pet or skateboard is. But it could also mean tracking containers on a huge cargo ship. Same basic principle, a world of difference regarding technologies and context.
Everything connected. Everywhere.
IoT is not separate from the Internet, but an expansion of it — a way of intelligently fusing the real and cyber worlds. By 2050, there will be 24 billion interconnected devices, meaning almost every object us around us: streetlights, thermostats, electric meters, fitness trackers, water pumps, cars, elevators, even gym vests.
These IoT-enabled devices contain sensors that constantly collect and react to data, and this vast level of data can be used to unlock new levels of intelligence.
No limits, except your imagination.
Every so often, an innovation comes along that leaves those without it behind. IoT is such a game-changer. Because it’s not what it IoT is, it’s what it has the potential to be. For businesses dreaming of new solutions, the only limits are their imagination.
Ericsson’s IoT solutions will help you bridge that gap between possibility and reality. And we’ll do this by supplying the ultimate connector: cellular.